Syntrophic growth on formate: a new microbial niche in anoxic environments.

نویسندگان

  • Jan Dolfing
  • Bo Jiang
  • Anne M Henstra
  • Alfons J M Stams
  • Caroline M Plugge
چکیده

Anaerobic syntrophic associations of fermentative bacteria and methanogenic archaea operate at the thermodynamic limits of life. The interspecies transfer of electrons from formate or hydrogen as a substrate for the methanogens is key. Contrary requirements of syntrophs and methanogens for growth-sustaining product and substrate concentrations keep the formate and hydrogen concentrations low and within a narrow range. Since formate is a direct substrate for methanogens, a niche for microorganisms that grow by the conversion of formate to hydrogen plus bicarbonate--or vice versa--may seem unlikely. Here we report experimental evidence for growth on formate by syntrophic communities of (i) Moorella sp. strain AMP in coculture with a thermophilic hydrogen-consuming Methanothermobacter species and of (ii) Desulfovibrio sp. strain G11 in coculture with a mesophilic hydrogen consumer, Methanobrevibacter arboriphilus AZ. In pure culture, neither Moorella sp. strain AMP, nor Desulfovibrio sp. strain G11, nor the methanogens grow on formate alone. These results imply the existence of a previously unrecognized microbial niche in anoxic environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities

Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for...

متن کامل

Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth.

Mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers linked by interspecies electron transfer in syntrophic consortia that may include sulfate-reducing species (e.g., Desulfovibrio). Physiological differences and various gene repertoires implicated in syntrophic metabolism among Desulfovibrio species suggest considerabl...

متن کامل

Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms.

In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4 . The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion of these metabolites to acetate, CO2 , formate and hydrogen is endergonic under standard conditio...

متن کامل

Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor.

Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic met...

متن کامل

Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii

Syntrophaceticus schinkii is a mesophilic, anaerobic bacterium capable of oxidising acetate to CO2 and H2 in intimate association with a methanogenic partner, a syntrophic relationship which operates close to the energetic limits of microbial life. Syntrophaceticus schinkii has been identified as a key organism in engineered methane-producing processes relying on syntrophic acetate oxidation as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 19  شماره 

صفحات  -

تاریخ انتشار 2008